Ученые сыграли в "квантовый бильярд" при помощи материи и света

Международная группа ученых, возглавляемая учеными из австралийского Национального университета (Australian National University, ANU), в состав которой также входили ученые из Японии, Сингапура и Германии, в целях более глубокого проникновения в суть одной из областей фундаментальной квантовой физики, так называемой физики исключительных точек (physics of exceptional points), создали квантовую систему, функционирование которой весьма напоминает игру в бильярд. Эта достаточно крупномасштабная квантовая система представляет собой конденсат Бозе-Эйнштейна, состоящий из связанных и свободных квазичастиц, экситонов и поляритонов, а исследования, производимые при помощи этой системы, могут привести к открытию новых принципов, на которых будет основана электроника будущего поколения, использующая в своих целях уникальные свойства поляритонов.
"Исключительные точки (exceptional points, EP) демонстрируют нам интересные и парадоксальные явления, такие, как появление прозрачности у изначально непрозрачных материалов, однонаправленное распространение света или лазеры, которые перестают работать при превышении мощности накачки выше определенного предела" - рассказывает доктор Елена Островская (Dr. Elena Ostrovskaya), руководитель научной группы из ANU, - "И в нашу задачу входит поиск путей, позволяющих использовать эти явления на пользу людям".
Исключительная точка возникает, когда два различных (энергетических или динамических) состояния физической системы сливаются в одно. Изначально, такие явления наблюдались лишь в отношении классических электромагнитных волн микроволнового диапазона или диапазона видимого света, но теория допускает такие же проявления и по отношению к квантовым системам.
Квазичастицы экситоны и поляритоны являются гибридными частицами, в состав которых входит как материя, так и свет. Скопления, состоящие из большого количества таких квазичастиц, могут действовать как единое целое, в рамках которого все частицы ведут себя абсолютно подобным образом. И это поведение можно использовать для формирования "квантовых волн" в материи, находящейся в особом квантовом состоянии, называемом конденсатом Бозе-Эйнштейна.
Освещая светом лазера поверзность полупроводникового материала, исследователи создали квантовый аналог бильярдной игры, "стол" которой имеет размеры порядка 10 микрометров. Экситоны-поляритоны, используемые в этой игре вместо традиционных шаров, создают исключительные точки, проявляющиеся в соответствующем спектре электромагнитного диапазона. Вокруг этих точек образуется петля, которая называется топологической фазой Бери и любой объект, попадающий в область этой петли, вызывает изменение ее квантового состояния.
Таким образом, работа квантовой системы похожа на игру в бильярд, в которой положение шаров меняется каждый раз после удара. Только в квантовой системе при каждом воздействии светом лазера изменяется не положение шаров, а их квантовое состояние, которое определяет квантовое состояние системы в целом.
Следует отметить, что пока игра в "квантовый бильярд" проходила абсолютно случайным образом. Но, по мере проведения дальнейших исследований ученые научаться управлению изменениями квантового состояния, управлению направлением и силой удара с точки зрения терминологии бильярда. И тогда такие квантовые системы можно будет использовать в качестве элементов квантовых процессоров, выполняющих определенные функции по обработке информации, элементов электронных и спинтронных устройств.
Источник
Лазерный луч позволяет создать квантовые "водовороты"

Ученые-физики из австралийского Национального университета разработали технологию закручивания луча лазера в спираль и использовали этот луч для создания "водоворота" гибридных частиц света-материи, называемых поляритонами. Поляритоны - это квазичастицы, обладающие одновременно свойствами света и материи. Долгое время ученые могли лишь создавать эти квазичастицы, но управлять и манипулировать ими не удавалось при помощи любых доступных методов. А ведь такой контроль поведения поляритонов представляет собой весьма перспективное направление, при помощи квазичастиц можно создать абсолютно новые технологии, связывающие обычную электронику с лазерными или оптоволоконными технологиями.
Поляритоны формируются на поверхности полупроводниковых материалов, когда свет лазера начинает особым образом взаимодействовать со свободными электронами и электронными вакансиями в кристаллической решетке, так называемыми электронными дырками, которые являются носителями положительного электрического заряда. Возникающие при этом силы взаимодействия настолько велики, что по большинству свойств образования из поляритонов невозможно отличить от таких же образований из обычной материи.
Ученые создали закрученный луч, проведя свет лазера через отверстие, маску, грани которой имели спиральную нарезку, подобно нарезке в оружейных стволах. Высота и шаг этой нарезки были расчитаны таким образом, что за счет влияния некоторых оптических явлений, луч на выходе из отверстия также был закручен по спирали. Этот луч был направлен в область микровпадины, зажатой меж двух отражателей на поверхности полупроводникового материала, арсенида галлия, нанесенного на алюминиевую подложку.

"Раньше получаемые нами вихревые образования из поляритонов появлялись беспорядочно. Отдельные частицы постоянно пытались двигаться в созданном "водовороте" в противоположных направлениях" - рассказывает доктор Роберт Дол (Dr. Robert Dall), который проводил экспериментальную часть проекта, - "Однако, благодаря использованию спиральной маски, структурирующей свет лазера определенным образом, нам удалось создать систему, все частицы которой предпочитают одно направление движения. И эти частицы образуют единый, устойчивый вихрь, направление и скорость которого мы можем регулировать по нашему желанию".
Созданные учеными "водовороты" поляритонов являются одним из образцов поведения квантовой жидкости, в которой все частицы объединяются в так называемый конденсат Бозе-Эйнштейна. "Эти вихри являются ничем иным, как "окнами" в недоступный нам квантовый мир. Их можно использовать для создания высокочувствительных датчиков магнитных полей, элементов сверхпроводящих квантовых интерференционных устройств (SQUIDS, Superconducting QUantum Interference Devices) и для многого, многого другого" - рассказывает доктор Елена Островская, возглавлявшая научную группу, - "Помимо всего прочего эти эффекты можно использовать для передачи квантовой информации в будущих системах квантовых вычислений и квантовых коммуникаций".
"Поляритоника, область, в которой изучаются и используются свойства поляритонов, является одной из самых быстро развивающихся областей науки на сегодняшний день" - рассказывает доктор Островская, - "Понимая все перспективы, которые сулит человечеству использование поляритонов, мы собираемся организовать целую сеть лабораторий с множеством работающих в них научных групп, исследования которых наверняка принесут достаточно весомые результаты".
Источник
Новостной сайт E-News.su | E-News.pro. Используя материалы, размещайте обратную ссылку.
Оказать финансовую помощь сайту E-News.su | E-News.pro
Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter (не выделяйте 1 знак)





