Что мы можем извлечь из «черного ящика»? » E-News.su | Cамые свежие и актуальные новости Новороссии, России, Украины, Мира, политика, аналитика
ЧАТ

Что мы можем извлечь из «черного ящика»?

17:41 / 28.06.2022
1 355
1
Что мы можем извлечь из «черного ящика»?

Машинное обучение — относительно новый метод, deus ex machina, на который возлагают очень большие надежды во многих областях, от дизайна и медицины до теоретической и экспериментальной физики и химии.

При помощи специалистов из Университета «МИСИС» попробуем разобраться, на чем основаны эти надежды, насколько они оправданы и что следует принимать во внимание, рассчитывая на машинное обучение как на будущий универсальный инструмент.


Пример работы нейросети DALL-E 2, которая смогла дорисовать картину

Машинное обучение ассоциируется чаще всего с распознаванием и генерацией изображений. Системы искусственного интеллекта, такие как DALL-E или Imagen, впечатляют созданием картинок, которые все труднее отличать от иллюстраций художников или фотографий. Лица, синтезированные нейронными сетями, становятся все реалистичнее и даже вызывают у людей больше доверия, чем снимки настоящих людей.

На экране монитора генеративные сети уже «оживляют» умерших знаменитостей: например, на выставке, посвященной Сальвадору Дали, посетителей приветствует сам Дали, произносящий вдохновенную речь своим голосом и с присущими ему экспрессией и мимикой. Дипфейк создает полную иллюзию, словно видео с живым художником записано незадолго до события.


В работе с текстом нейросети не отстают от обученных на изображениях. Добротный онлайн-перевод с одного языка на другой уже занимает секунды, но еще дальше продвинулись большие языковые модели. Они читают текст и могут ответить на вопросы о прочитанном, исходя из логики и здравого смысла. Даже юмор им становится доступен. При этом количество параметров таких сетей неуклонно растет.

Недавно представленная система PaLM вмещает 540 миллиардов параметров, что в три раза больше знаменитой GPT-3. В Китае, используя экзафлопсный суперкомпьютер, создают систему BaGuaLu для обучения модели с 14,5 триллиона параметров. Как пишут разработчики, BaGuaLu потенциально «имеет возможность обучать модели с 174 триллионами параметров, что превосходит количество синапсов в человеческом мозге».

И хотя прорывы в работе с изображениями и текстами последние годы на виду, успехи машинного обучения этим не исчерпываются. Способность нейронных сетей обучаться и затем анализировать большие объемы данных уже востребована во многих областях. Рассмотрим эти менее хайповые, но не менее важные применения МО чуть подробнее.

Как мы поймем, из чего все сделано (физика)

Вот уже десяток лет алгоритмы машинного обучения играют важную роль в исследованиях на Большом адронном коллайдере. Машинное обучение используют для моделирования и калибровки детекторов, сбора данных, распознавания образов и идентификации частиц. Оно становится привычным инструментом во всех аспектах исследований в области физики: в экспериментах — от их разработки и оптимизации до сбора и анализа данных, в численном моделировании и даже в разработке теории.


Графическое отображение столкновений частиц, эксперимент DELPHI на встречных электрон-позитронных пучках LEP в CERN

Как правило, ученые ищут сверхредкие и тонкие отклонения от Стандартной модели. Часто бывает так, что ни одно не является уникально аномальным — только в контексте многих примеров можно построить статистическое доказательство открытия. Словом, и здесь образуется большой поток сложных данных от экспериментальных установок, и в этом запутанном ландшафте с помощью машинного обучения физики ищут закономерности, тенденции и аномалии, чтобы извлечь из данных значимые выводы.

В теоретической физике математическую концепцию или модель часто используют для создания синтетических данных — набора данных результатов моделирования. Системы Machine Learning, обученные на таких данных, оказались способны делать прогнозы для моделей стабильности планетарных систем, генерировать гипотезы в теории узлов и теории представлений.
Студенты магистерской программы Университета «МИСИС» «Полупроводниковые преобразователи энергии» участвуют в экспериментах, проводимых в рамках коллаборации LHCb (ЦЕРН) для фундаментальных исследований новых частиц легкой темной материи.

Прикладные физики пошли еще дальше — они научили нейронную сеть управлять настоящим термоядерным реактором. Внутри его катушки мощные магнитные поля удерживают раскаленную плазму. Магниты не дают ей коснуться стенок реактора, и задача состоит в том, чтобы удержать плазму внутри реактора достаточно долго для того, чтобы извлечь из нее энергию. Удержание плазмы требует постоянного контроля и управления магнитным полем, и ученые обучили нейронную сеть на симуляции.

Как только она смогла контролировать и изменять форму плазмы внутри виртуального реактора, ее переключили на настоящий экспериментальный токамак в Лозанне. В общей сложности управление реактором длилось всего две секунды, но в физике высоких энергий две секунды — это целая эпоха. Алгоритм 10 тысяч раз в секунду (!) проводил 90 различных измерений, описывающих форму и положение плазмы, и регулировал напряжение в 19 магнитах.

Как мы себе объясним, каким образом это связано между собой (химия)

Многие действующие концепции в химии были разработаны на основе относительно небольших наборов данных и поэтому могут быть весьма предвзятыми. Машинное же обучение дает химикам возможность вернуться к истокам и разработать новые правила на основе действительно крупных наборов данных. Идея состоит в том, чтобы изучить статистическую связь между химической структурой и потенциальной энергией, не полагаясь на привычные представления о химических связях или знаниях о взаимодействиях.


Молекулярная модель соединения перфлуброн (контрастное вещество для магнитно-резонансной томографии, компьютерной томографии и сонографии) с обозначением электронной плотности разными цветами (красный – отрицательный, синий – положительный)

Чтобы рассчитать динамику молекул, необходимо знать силы, действующие на отдельные атомы на каждом временном шаге моделирования. Есть точный способ узнать эти силы: нужно решить уравнение Шрёдингера, которое описывает физические законы, лежащие в основе большинства химических явлений и процессов. Однако аналитическое решение возможно только для относительно простых систем из двух тел, например таких как атом водорода. Для более крупных химических структур уравнения можно решить лишь приблизительно, но даже такое решение потребует очень сложных (и долгих) вычислений.

Машинное же обучение позволяет кардинально сократить время и ресурсы без необходимости решать какие-либо уравнения. Благодаря этой уникальной способности МО в последние годы становится все более популярным среди химиков. Эти методы позволяют исследовать химическое пространство и предсказывать свойства соединений с высокой точностью.

Кроме того, методы МО привели к новым химическим открытиям в системах, которые уже считались хорошо изученными. Стало ясно, что даже относительно небольшие молекулы проявляют нетривиальные электронные эффекты, которые влияют на их динамику и позволяют лучше понять экспериментальные наблюдения. Благодаря МО многие другие неизвестные химические эффекты еще ждут своего открытия — и уже вскоре дождутся.

Продолжение на следующей странице
Предыдущая страница 1 2 3 Следующая страница

Новостной сайт E-News.su | E-News.pro. Используя материалы, размещайте обратную ссылку.

Оказать финансовую помощь сайту E-News.su | E-News.pro


          

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter (не выделяйте 1 знак)

Не забудь поделиться ссылкой

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
  1. +1
    Коллега
    Редакторы | 3 373 коммент | 295 публикаций | 28 июня 2022 18:14
    Не всё так однозначно. Будущее покажет.
    Показать
Информация
Комментировать статьи на сайте возможно только в течении 30 дней со дня публикации.